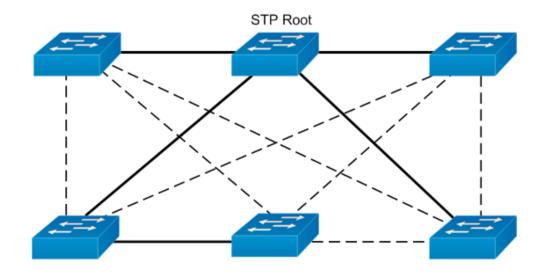


TRILL Deployment in SIX

Marian Ďurkovič md@bts.sk

Basic Facts

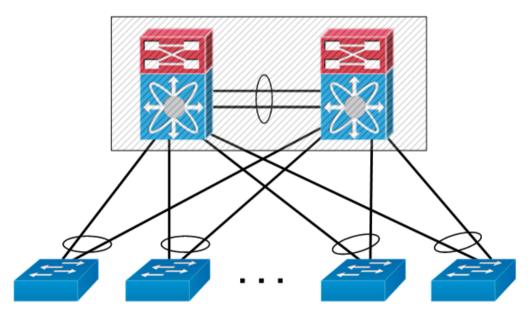
- SIX established in 1996 upon agreement of all major slovak ISPs
- Operations entrusted to Slovak University of Technology
 - Institution with long-term stability
 - Not a competitor to any ISP, telco, content provider, etc.
- Neutral and non-profit
 - Equal treatment for all SIX members
- 54 members, daily traffic peak ~70 Gbps
- Supports all kinds of interconnection:
 - Public IPv4 & IPv6 peering
 - Private peering
 - Ethernet, SDH, lambda, dark fibre, ...


New SIX Platform

- Planning started in 2013
- Main goals:
 - Keep up with traffic demands
 - Provide enough available ports
 - Support new interfaces (40GE, 100GE)
 - Introduce state-of-the-art technology
 - Improve redundancy
 - Ensure easy upgradability
- Steps taken:
 - In-depth review of available technologies
 - Extensive lab testing of multiple devices & feedback to vendors
 - Selection of new core technology
 - Pilot project with academic network from Aug 5, 2014
 - Production from Sep 30, 2014

Rejected Technologies

- Technologies, which are unable to utilize all available links
- In principle all variants of spanning tree



- Blocking of redundant links is backwards
- Huge waste of available bandwidth
- Protocol failure leads to network meltdown

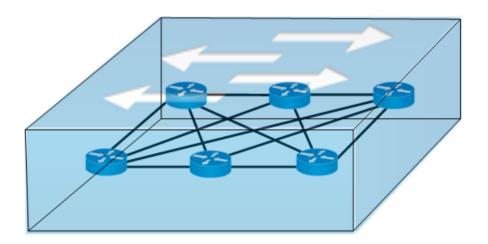
Rejected Technologies

- Technologies, which only work in very specific topology and/or proprietary to single vendor (or even single product)
- Typical example: MC-LAG / VSS / vPC / VLT / IRF

- Complex synchronization of state between core switches
- Doesn't scale to more than 2 core units
- No standardization in place

Evaluated Technologies

- List relatively short: VPLS, TRILL, SPB
- VPLS in production in large IXPs, so there's enough experience
 - Hands-on experience needed for new technologies
- TRILL equipment received for lab-testing from 3 vendors
 - We thoroughly checked the implementation
 - Very helpful for full understanding of TRILL operation
 - Found some limitations which we reported back to vendors
- Key differences:
 - VPLS: traffic flows over preconfigured tunnels number of LSPs grows fast with network complexity
 - TRILL: every switch makes independent routing decisions routing tables small and easy to check
- SPB not very useful for IXP
 - Needs spanning tree to work
 - Strange & suboptimal ECMP load balancing


The Decision: TRILL

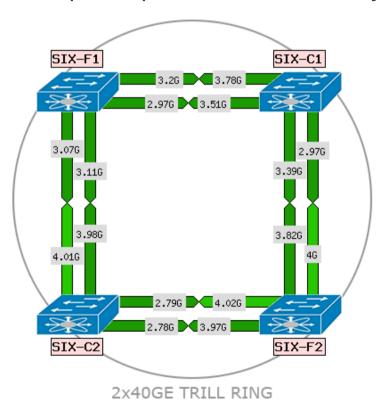
- We strongly believe in KISS principle
 - Most systems work best if they're kept simple rather than made complicated
- IP routing is nice example
 - Key technology which enabled Internet in today's scale
 - Simple but very powerful and mature
 - No tunnels each router independently decides about next hop
 - Not restricted to any predefined topology
- MPLS much more complex
 - Requires more expensive hardware
 - Configuration-intensive

TRILL Mechanics

- TRILL internally uses exactly the same principles as IP routing
 - Authors haven't tried to reinvent the wheel
 - TRILL headers are smaller, but have the same content
 - Builds on dynamic routing by field-proven IS-IS protocol
 - Natively makes use of all available links
 - Supports multiple paths (ECMP)
 - Utilizes IP safety belts like TTL check, RPF check
- External devices just see a huge ethernet switch

SIX Building Blocks

- Instead of installing one big switch, we went for distributed design similar to large clouds
- 4 Huawei CloudEngine switches connected by dual 40GE rings
- Switches are like building blocks of various sizes:


ASIC	Capacity	Ports (1RU)	Alt. Ports
Trident	0.64 Tbps	64 x 10GE	40GE
Trident +	0.64 Tbps	64 x 10GE	40GE
Trident 2	1.28 Tbps	32 x 40GE	10GE
Tomahawk	3.20 Tbps	32 x 100GE	10GE, 40GE

- When we need more capacity, we just add another switch
- TRILL supports arbitrary topology when current rings reach their limits, we can easily change to full mesh, leaf & spine etc.

TRILL Load Balancing

- TRILL natively supports fine-grained per-flow ECMP load balancing
- No special provisions needed just configure equal link costs

TRILL Unicas				
Flags: D-Dow	nload To	Fib		
Total Route(s): 3			
Nickname	Cost	Flag	OutInterface	Нор
SIX-F2	1000	D	40GE1/0/1	2
			40GE1/0/2	2
			40GE1/0/3	2
			40GE1/0/4	2
SIX-C1	500	D	40GE1/0/1	1
			40GE1/0/2	1
SIX-C2	500	D	40GE1/0/3	1
			40GE1/0/4	1

Traffic between SIX-F1 and SIX-F2 uses all 4 available paths

Improved Maintenance

- TRILL allows reconfiguration of SIX core without single packet loss
- This is possible thanks to IS-IS routing protocol
- Well-known procedure from IP backbones:
 - Set IS-IS cost of the link to maximum
 - Wait until all traffic gets rerouted
 - Disconnect the link
- We're able to change backbone topology, insert new switches or perform maintenance without any impact to SIX members
- Our switches also support hitless software patching
 - Security and bug fixes are applied to running system
 - No need to restart switches

Experience with TRILL

- Initial software for lab testing didn't support per-flow load balancing
 - Major problem for IXP application
 - Supported in HW but needs non-default ASIC register settings
 - Implemented on our request in V1R3 software (Jul 30, 2014)
- During pilot with academic network we found a problem with ifHClnOctets/ifHCOutOctets SNMP counters
 - Fixed by a 24 kB patch applied before production
- Another minor SNMP issue discovered in Jan 2015 ifHCInUcastPkts wrapping at 40-bit boundary
 - Patch applied to running system without any service impact
- TRILL implementation very robust and reliable
 - No problems found during 6 months of production

Conclusions

- TRILL met all our expectations about next-gen SIX infrastructure
- Distributed architecture consisting of fixed building blocks
 - Currently available ports:

96 x 10G/1G SFP

96 x 10G/1G/100Base-T

- SIX platform scalable upto 10s of Tbps as needed
- Solution based on industry standards
- Support for arbitrary topology
 - SIX core able to keep up with future demands
- Excellent support from Huawei
- TRILL planned as transport infrastructure for Slovak Academic Network